3.118 \(\int \frac{\sin ^n(e+f x)}{\sqrt{1+\sin (e+f x)}} \, dx\)

Optimal. Leaf size=58 \[ -\frac{\cos (e+f x) F_1\left (\frac{1}{2};-n,1;\frac{3}{2};1-\sin (e+f x),\frac{1}{2} (1-\sin (e+f x))\right )}{f \sqrt{\sin (e+f x)+1}} \]

[Out]

-((AppellF1[1/2, -n, 1, 3/2, 1 - Sin[e + f*x], (1 - Sin[e + f*x])/2]*Cos[e + f*x])/(f*Sqrt[1 + Sin[e + f*x]]))

________________________________________________________________________________________

Rubi [A]  time = 0.0676877, antiderivative size = 58, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2785, 130, 429} \[ -\frac{\cos (e+f x) F_1\left (\frac{1}{2};-n,1;\frac{3}{2};1-\sin (e+f x),\frac{1}{2} (1-\sin (e+f x))\right )}{f \sqrt{\sin (e+f x)+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^n/Sqrt[1 + Sin[e + f*x]],x]

[Out]

-((AppellF1[1/2, -n, 1, 3/2, 1 - Sin[e + f*x], (1 - Sin[e + f*x])/2]*Cos[e + f*x])/(f*Sqrt[1 + Sin[e + f*x]]))

Rule 2785

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Dist[(b*(d
/b)^n*Cos[e + f*x])/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]]), Subst[Int[((a - x)^n*(2*a - x)^(m -
 1/2))/Sqrt[x], x], x, a - b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0] && GtQ[d/b, 0]

Rule 130

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + (b*x^k)/e)^m*(c + (d*x^k)/e)^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{\sin ^n(e+f x)}{\sqrt{1+\sin (e+f x)}} \, dx &=-\frac{\cos (e+f x) \operatorname{Subst}\left (\int \frac{(1-x)^n}{(2-x) \sqrt{x}} \, dx,x,1-\sin (e+f x)\right )}{f \sqrt{1-\sin (e+f x)} \sqrt{1+\sin (e+f x)}}\\ &=-\frac{(2 \cos (e+f x)) \operatorname{Subst}\left (\int \frac{\left (1-x^2\right )^n}{2-x^2} \, dx,x,\sqrt{1-\sin (e+f x)}\right )}{f \sqrt{1-\sin (e+f x)} \sqrt{1+\sin (e+f x)}}\\ &=-\frac{F_1\left (\frac{1}{2};-n,1;\frac{3}{2};1-\sin (e+f x),\frac{1}{2} (1-\sin (e+f x))\right ) \cos (e+f x)}{f \sqrt{1+\sin (e+f x)}}\\ \end{align*}

Mathematica [B]  time = 1.53659, size = 225, normalized size = 3.88 \[ \frac{\sqrt{\sin (e+f x)+1} \cos (e+f x) (-\sin (e+f x))^{-n} \sin ^n(e+f x) \left (1-\frac{1}{\sin (e+f x)+1}\right )^{-n} \left (4 \sqrt{\frac{\sin (e+f x)-1}{\sin (e+f x)+1}} (-\sin (e+f x))^n F_1\left (-n-\frac{1}{2};-\frac{1}{2},-n;\frac{1}{2}-n;\frac{2}{\sin (e+f x)+1},\frac{1}{\sin (e+f x)+1}\right )-(2 n+1) \sqrt{2-2 \sin (e+f x)} \left (1-\frac{1}{\sin (e+f x)+1}\right )^n F_1\left (1;\frac{1}{2},-n;2;\frac{1}{2} (\sin (e+f x)+1),\sin (e+f x)+1\right )\right )}{4 f (2 n+1) (\sin (e+f x)-1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sin[e + f*x]^n/Sqrt[1 + Sin[e + f*x]],x]

[Out]

(Cos[e + f*x]*Sin[e + f*x]^n*Sqrt[1 + Sin[e + f*x]]*(4*AppellF1[-1/2 - n, -1/2, -n, 1/2 - n, 2/(1 + Sin[e + f*
x]), (1 + Sin[e + f*x])^(-1)]*(-Sin[e + f*x])^n*Sqrt[(-1 + Sin[e + f*x])/(1 + Sin[e + f*x])] - (1 + 2*n)*Appel
lF1[1, 1/2, -n, 2, (1 + Sin[e + f*x])/2, 1 + Sin[e + f*x]]*Sqrt[2 - 2*Sin[e + f*x]]*(1 - (1 + Sin[e + f*x])^(-
1))^n))/(4*f*(1 + 2*n)*(-1 + Sin[e + f*x])*(-Sin[e + f*x])^n*(1 - (1 + Sin[e + f*x])^(-1))^n)

________________________________________________________________________________________

Maple [F]  time = 0.088, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \sin \left ( fx+e \right ) \right ) ^{n}{\frac{1}{\sqrt{1+\sin \left ( fx+e \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^n/(1+sin(f*x+e))^(1/2),x)

[Out]

int(sin(f*x+e)^n/(1+sin(f*x+e))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{n}}{\sqrt{\sin \left (f x + e\right ) + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n/(1+sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^n/sqrt(sin(f*x + e) + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sin \left (f x + e\right )^{n}}{\sqrt{\sin \left (f x + e\right ) + 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n/(1+sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sin(f*x + e)^n/sqrt(sin(f*x + e) + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin ^{n}{\left (e + f x \right )}}{\sqrt{\sin{\left (e + f x \right )} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**n/(1+sin(f*x+e))**(1/2),x)

[Out]

Integral(sin(e + f*x)**n/sqrt(sin(e + f*x) + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{n}}{\sqrt{\sin \left (f x + e\right ) + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^n/(1+sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^n/sqrt(sin(f*x + e) + 1), x)